Scott Cole
COGS 108 - Data Science in Practice
Link to slides: bit.ly/cogs108cluster
Link to notebook: bit.ly/cogs108clusternb
from sklearn import neighbors
clf = neighbors.KNeighborsClassifier(7, weights = 'uniform')
clf.fit(X, y)
print(clf.predict([[0,0],[5,2]]))
[ 0. 2.]
2) Assign every item to its nearest cluster center (e.g. using Euclidean distance)
4) Repeat steps 2,3 until convergence (change in cluster assignments less than a threshold)
4) Repeat steps 2,3 until convergence (change in cluster assignments less than a threshold)
from sklearn.datasets import make_blobs
plt.figure(figsize=(4,4))
X, y = make_blobs(n_samples=30, n_features=2, centers=3, cluster_std=2, random_state=0)
plt.scatter(X[:, 0], X[:, 1], c='k')
plt.show()
# Generate fake data
X, y = make_blobs(n_samples=100, n_features=2, centers=4, cluster_std=.6, random_state=1)
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.scatter(X[:, 0], X[:, 1], c='k')
# Fit clusters for various numbers of clusters
from sklearn.cluster import KMeans
K = range(1,10)
KM = [KMeans(n_clusters=k, random_state=0).fit(X) for k in K]
centroids = [km.cluster_centers_ for km in KM] # cluster centroids
# Compute average euclidean distance between each point and its cluster centroid
from scipy.spatial.distance import cdist
D_k = [cdist(X, cent, 'euclidean') for cent in centroids]
cIdx = [np.argmin(D,axis=1) for D in D_k]
dist = [np.min(D,axis=1) for D in D_k]
avgWithinSS = [sum(d)/X.shape[0] for d in dist]
plt.subplot(1,2,2)
kIdx = 3
plt.plot(K, avgWithinSS, 'b.-', ms=10)
plt.plot(K[kIdx], avgWithinSS[kIdx], marker='o', markersize=15, mew=2, mec='r', mfc='None')
plt.xlabel('Number of clusters')
plt.ylabel('Average within-cluster squared error')
plt.savefig('images/elbow.png')
plt.show()
# Generate fake data
X, y = make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=2, random_state=9)
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.scatter(X[:, 0], X[:, 1], c='k')
# Fit clusters for various numbers of clusters
K = range(1,10)
KM = [KMeans(n_clusters=k, random_state=0).fit(X) for k in K]
centroids = [km.cluster_centers_ for km in KM] # cluster centroids
# Compute average euclidean distance between each point and its cluster centroid
D_k = [cdist(X, cent, 'euclidean') for cent in centroids]
cIdx = [np.argmin(D,axis=1) for D in D_k]
dist = [np.min(D,axis=1) for D in D_k]
avgWithinSS = [sum(d)/X.shape[0] for d in dist]
plt.subplot(1,2,2)
kIdx = 2
plt.plot(K, avgWithinSS, 'b.-', ms=10)
plt.plot(K[kIdx], avgWithinSS[kIdx], marker='o', markersize=15, mew=2, mec='r', mfc='None')
plt.xlabel('Number of clusters')
plt.ylabel('Average within-cluster squared error')
plt.savefig('images/noelbow.png')
plt.show()
X, y = make_blobs(n_samples=30, n_features=2, centers=3, cluster_std=2, random_state=0)
# Predict clusters using 2 different random seeds
from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=3, n_init=1, random_state=0).fit_predict(X)
y_pred2 = KMeans(n_clusters=3, n_init=1, random_state=1).fit_predict(X)
plt.figure(figsize=(12,4))
plt.subplot(1,3,1)
plt.scatter(X[:, 0], X[:, 1], c='k')
plt.subplot(1,3,2)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.subplot(1,3,3)
plt.scatter(X[:, 0], X[:, 1], c=y_pred2)
plt.show()
X, y = make_blobs(n_samples=30, n_features=2, centers=3, cluster_std=2, random_state=0)
# Predict clusters using 2 different random seeds
y_pred = KMeans(n_clusters=3, n_init=100, random_state=0).fit_predict(X)
y_pred2 = KMeans(n_clusters=3, n_init=100, random_state=1).fit_predict(X)
plt.figure(figsize=(12,4))
plt.subplot(1,3,1)
plt.scatter(X[:, 0], X[:, 1], c='k')
plt.subplot(1,3,2)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.subplot(1,3,3)
plt.scatter(X[:, 0], X[:, 1], c=y_pred2)
plt.show()
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
plt.figure(figsize=(12, 12))
n_samples = 300
random_state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state)
# Incorrect number of clusters
y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)
plt.subplot(221)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title("Incorrect Number of Blobs")
# Anisotropicly distributed data
transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]]
X_aniso = np.dot(X, transformation)
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)
plt.subplot(222)
plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)
plt.title("Anisotropicly Distributed Blobs")
# Different variance
X_varied, y_varied = make_blobs(n_samples=n_samples,
cluster_std=[1.0, 2.5, 0.5],
random_state=random_state)
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)
plt.subplot(223)
plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)
plt.title("Unequal Variance")
# Unevenly sized blobs
X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered)
plt.subplot(224)
plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred)
plt.title("Unevenly Sized Blobs")
plt.savefig('images/limit.png')
plt.show()
Advantages
Disadvantages